
Applied Joint-Space Torque and Stiffness Control
of Tendon-Driven Fingers

Muhammad E. Abdallah, Robert Platt Jr., Charles W. Wampler, Brian Hargrave

Abstract— Existing tendon-driven fingers have applied force
control through independent tension controllers on each tendon,
i.e. in the tendon-space. The coupled kinematics of the tendons,
however, cause such controllers to exhibit a transient coupling
in their response. This problem can be resolved by alternatively
framing the controllers in the joint-space of the manipulator.
This work presents a joint-space torque control law that
demonstrates both a decoupled and significantly faster response
than an equivalent tendon-space formulation. The law also
demonstrates greater speed and robustness than comparable
PI controllers. In addition, a tension distribution algorithm is
presented here to allocate forces from the joints to the tendons.
It allocates the tensions so that they satisfy both an upper
and lower bound, and it does so without requiring linear
programming or open-ended iterations. The control law and
tension distribution algorithm are implemented on the robotic
hand of Robonaut-2.

I. INTRODUCTION

Tendon transmission systems are often used in the actu-
ation of fingers for high degree-of-freedom (DOF) hands.
The remote actuation allows for significant reductions to the
size and weight of the fingers, features that are important for
dexterous manipulation. Since the tendons can only transmit
forces in tension, the number of actuators must exceed the
DOF’s to achieve fully determined control of the finger.
It turns out that only one tendon more than the number
of DOF’s is needed [1]. If arranged correctly, the n + 1
tendons can independently control the n DOF’s while always
maintaining positive tensions. Such an “n+1” arrangement is
very attractive due to its minimum number of actuators. Each
extra actuator and transmission system greatly increase the
demands on space, power, and maintenance for the system.

On the other hand, an “n + 1” arrangement also intro-
duces a layer of complexity to the control. This complexity
arises from the coupled relationship between the tendon and
joint displacements. Traditionally, such fingers have been
controlled using what can be referred to as tendon-space
controllers. Under such schemes, desired joint torques are
translated into desired tendon tensions, then each tension
is controlled by an independent controller. Salisbury and
Craig were the first to implement such a scheme using the
Stanford/JPL hand [2]. Similar schemes where implemented

M. Abdallah and C. Wampler are with the Manufacturing Sys-
tems Research Lab, General Motors R&D, Warren, MI 48090, USA
{muhammad.abdallah, charles.w.wampler}@gm.com

R. Platt was with the Johnson Space Center, NASA, Houston, TX 77058,
USA robert.platt-1@nasa.gov

B. Hargrave is with Oceaneering Space Systems, Houston, TX 77058,
USA bhargrave@oceaneering.com

Patents are pending on this work.

on the CT-ARM manipulator and POSTECH hand, although
they both used 2n tendons [3], [4].

Platt, et al. have shown, however, that tendon-space con-
trollers introduce a transient coupling to the dynamics of the
finger [5]. This disturbance arises intrinsically from the kine-
matics of the tendons, rather than from bandwidth limitations
in the controllers. This problem is solved by implementing
joint-space controllers that regulate the reference torques in
the joint-space and thus decouple the tendon effects.

The ability to control torques is important in assembly ap-
plications, where fingers physically interact with unstructured
environments. The torque control can then be implemented in
either a stiffness or impedance framework, to define either
the static or dynamic interaction of the finger. This work
presents a stiffness controller for tendon-driven manipulators.
The controller is implemented in both a tendon-space and
joint-space formulation.

The existing systems all implemented their torque control
based on proportional-integral (PI) controllers, be they in the
tendon-space [2], [4] or in the joint-space [5]. The joint-space
controller of [5] struggled when conduits where added to
the tendon drive-train. The conduits add complex dynamics
and hysteresis due to their distributed stiction. The controller
presented here proved to be both faster and more robust
to the unmodeled conduit dynamics than the comparable PI
controller.

In addition, this work presents a tension distribution al-
gorithm for allocating the desired forces from the joints to

Fig. 1. The torque controlled fingers of Robonaut-2.



the tendons. This step is necessary in all torque controllers,
where it must satisfy the fundamental requirement of pos-
itive tensions. The algorithm presented here distributes the
tensions so that they satisfy both a lower and upper bound.
It satisfies the lower bound while minimizing the internal
tension applied. At the same time, it satisfies the upper bound
while eliminating the coupled effects of saturation. The
algorithm is computationally efficient, requiring no linear
programming or open iterative solutions.

A few alternatives exist in the literature. Salisbury and
Craig present a method for setting the lowest tension equal
to zero, and we build off their method [2]. Jacobsen, et.
al present a computationally efficient analytical solution for
antagonistic pairs [6], which is then extended to multiple
DOF systems by Lee and Tsai [7]. This solution, however,
only provides for positive tensions and is heavily system
dependent, requiring considerable analytical derivation for
each system. Hirose and Ma present an alogrithm that
changes the joint torques and does not necessarily minimize
the internal tension [8].

Both the joint-space controller and the tension distribu-
tion algorithm are currently implemented on the humanoid
hand of the GM-NASA Robonaut-2 robot. These topics are
presented over three sections. The first section presents the
tension distribution algorithm. The second section presents
the control law in both formulations. Finally, the third section
presents the experimental results from Robonaut-2.

II. TENSION DISTRIBUTION ALGORITHM

A. Problem

In the torque control of tendon-driven fingers, the desired
joint torques must first be translated into tendon tensions.
This problem is referred to as tension distribution, and it
must ensure that each tension value is non-negative. Alter-
natively, the step can be framed as a problem of solving
for the necessary internal tension on the finger. The distri-
bution can essentially be solved using a linear programming
technique—which is undesirable due to the complexity and
open iterative nature of the solution.

We present a solution that ensures that each tension falls
within the bounded range [fmin, fmax], where fmin ≥ 0. It
sets the lowest tension equal to fmin and thus minimizes
the internal tension. Whenever the highest tension exceeds
fmax, it solves for the linear scaling of the torques needed
to satisfy the bounds while minimizing the internal tension.

Fundamental to the problem is the relationship between
the n joint torques, τ , and the n+1 tendon tensions, f . The
transformation from tensions to torques is:(τ

t

)
= Pf , (1)

P =
[

R

W

]
,

where t is defined as the internal tension. R ∈ R
n×n+1 is

known as the tendon map; it contains the joint radii data
mapping tendon tensions to joint torques. W is an n + 1
row matrix that does not lie in the range space of RT .

For the system to be tendon controllable, R must be full
row rank and have an all-positive null-space [9]. P is thus
a nonsingular matrix. Throughout this work, bold symbols
represent column matrices.

The solution for the tensions can be found from the inverse
of (1). That inverse can be partitioned as follows:

f = P−1
(τ

t

)
, (2)

P−1 = [A a],

where A ∈ R
n+1×n and a ∈ R

n+1×1. We will select W to
be orthogonal to R; that is, RW T = 0. W thus spans the
null-space of R and, by assumption, is all-positive. Under
this orthogonality condition:

A = R+, a = W+, (3)

where the superscript (+) indicates the pseudoinverse. Note
that a is all-positive, since the pseudoinverse of a positive
vector is also positive. Assuming constant joint radii, A and
a are constant matrices that can be precomputed.

B. Solution

The first step in the algorithm is to distribute the tensions
so that the minimum value equals fmin. Let Ai represent the
rows of A and ai the elements of a. We require that,

fi = Aiτ + ait ≥ fmin. (4)

This entails the following solution for the internal tension,
presented in [2]. Recall that ai > 0.

t0 = max
i

fmin − Aiτ

ai
(5)

By substituting this internal tension value (t0) into (2),
we can obtain the tension distribution. We refer to this
distribution as the initial solution.

f = [A a]
(

τ

t0

)
. (6)

Now, we want to take this algorithm a step further and set
an upper bound for the tension values. The first step is to
check if any of the tensions exceed the upper bound, f max.
Let index l represent the element with the lowest tension and
h represent the element with the highest tension. If fh >
fmax, we will linearly scale the torques such that:

f = [A a]
(ατ

t

)
, (7)

where α is a positive scalar. Now, we will find the explicit
solution where fl = fmin and fh = fmax. The result
follows, which we refer to as the scaled solution.

d = (ahAl − alAh)τ

α =
ahfmin − alfmax

d

t =
fmaxAl − fminAh

d
τ (8)

As we will show in the next subsection, this solution guar-
antees that f ∈ [fmin, fmax] under two conditions: when



fmin = 0 or the finger design has a balanced configuration.
A finger with a balanced configuration exhibits no net torques
when the tensions are all equal. Otherwise, the solution does
not guarantee that all elements lie within the desired limits.
In the case that an element does exceed the limits, the scaled
solution (8) needs to be iterated after reassigning the index
l or h, respectively, to the new extreme element.

Having an open-ended iterative solution is undesirable
in a high bandwidth, real-time application. We show here,
however, that the need to iterate is rare due to the nature
of the tendon transformation. For a typical design, it can
occur for less than 2% of the commanded torque values. Not
only that, but the first iteration is sufficient for solving the
problem. Hence, instead of an open-ended iterative problem,
the algorithm can be capped at one iteration. Of course,
no iterations at all are needed if either fmin = 0 or the
configuration is balanced. The next subsection discusses
these claims.

The advantage of this algorithm lies in two key points.
First, it distributes the tendons with a computationally ef-
ficient algorithm that does not need linear programming.
Second, it caps the maximum tension with a linear scaling
of the desired joint torques. This feature protects the tendons
from being overloaded either by the controller or by the
environment. It also allows the system to avoid mechanically
saturating the tensions, which would introduce a coupled
disturbance to the joint torques.

Here is a summary of the tension distribution algorithm:

1) Find the initial solution using (5) and (6).
2) Assign index h to the element with the highest tension

and l to the element with the lowest tension.
3) If fh < fmax, exit. Else, find the first scaled solution

using (8) and (7).
4) Assign index h to the element with the highest tension

and l to the element with the lowest tension.
5) If fh < fmax and fl > fmin, exit. Else, find the second

and final scaled solution using (8) and (7).

C. Analysis

The previous subsection claims that the scaled solution
rarely pushes another element beyond the bounds. It also
claims that no iterations are needed when fmin = 0 or the
finger has a balanced configuration. This subsection presents
an analysis of these claims.

First, consider the condition for the existence of a solution
in (8). Derived from the limiting case of f = ato, a solution
will exist if and only if:

fmax ≥ max
i

ai

al
fmin. (9)

This condition should be readily satisfied in typical finger
implementations. Given this condition, it can be shown that
α lies in the range (0, 1).

Second, consider the relationship between the scaled and
initial solutions. Whenever the scaled solution maintains the
relative order of the elements, no iteration will be needed.
Let 0f refer to the initial solution while 1f refer to the

first scaled solution. It can be shown that the two relate as
follows.

1f = α 0f + (1−α)fmin

al
a (10)

The first term on the right-hand side represents the linearly
scaled portion of the result; it thus maintains the order of
the elements. The second term, however, represents a change
in the linear distribution. Hence, when fmin = 0, the term
drops out and the scaled solution fully maintains the relative
magnitudes of the elements. This guarantees that the bounds
are satisfied after the first scaled solution.

Alternatively, the linear distribution is also maintained if
the elements of a are all equal. We refer to this condition
as a balanced configuration. The condition occurs when the
columns of R, ri, sum to zero.

n+1∑
i=1

ri = 0 (11)

Hence, a vector f of equal tensions will lie in the null-space
of R. Intuitively, it implies that the joint radii are so balanced
as to produce no net torques when the tensions are all equal.

When neither of these two conditions is true, the relative
order of the elements can change and a different element
can jump the limit. In a typical finger design, however,
the relative difference between the elements of a will be
small and the jump will rarely occur. Fingers designed
to manipulate in both directions will not diverge far from
the balanced condition; otherwise, the force control will be
heavily biased in one direction. In a numerical study of a
representative finger, it was observed that a third element
rarely exceeds the bounds after the first scaled solution, and
that the algorithm can be capped at one iteration. That study
is presented in the next subsection.

D. Computational Results

The algorithm was tested in a Matlab simulation modeling
the Robonaut index finger. The finger has three joints and
four tendons (R ∈ R

4×3). The actuators were designed for
a maximum of 50 lb tension, producing a maximum joint
torque of 26 in-lbs on the finger. The tendon map for the
finger follows.

P =

⎡
⎢⎢⎣

0.15 0.15 −0.15 −0.15
0.265 −0.195 0.265 −0.195

0 0 0.195 −0.195
0.195 0.367 0.281 0.281

⎤
⎥⎥⎦ (12)

The algorithm limits were set to fmin = 2 lbs and fmax =
40 lbs. The value of fmin was selected conservatively; lower,
more typical values reduce the chance of needing iterations.
According to condition (9), a solution exists given fmax ≥ 4.

The simulation tested all torque combinations spanning a
range of τi ∈ [−50, 100] in-lbs, with a 1 lb resolution. After
the first scaled solution, an element of f exceeded the limits
on less than 2% of the torque values. Even in those cases,
the high and low values remained close to the limits. Out of
the 3 million test points tried, the absolute maximum tension
value was 41.1 lbs, and the absolute minimum was 1.2 lbs.



Running the same test with one iteration, the limits were
exceeded on (statistically) 0% of the values. The absolute
extreme values returned were 40.2 and 2.0 lbs respectively.
Hence, we can confidently cap the number of iterations in
the algorithm at one.

Given this tension distribution algorithm, we can now turn
to the actual finger controllers. The next section presents
the control law in both a tendon-space and joint-space
formulation.

III. FINGER STIFFNESS CONTROLLER

The ability to control torques is important for manipulators
that interact physically with their environments. The torque
controller presented here is formulated as a stiffness con-
troller for the finger joints. It can also be applied to higher-
order terms for full impedance control.

The stiffness control commands a torque proportional to
the joint error. Given a desired vector of joint values, q d, the
vector of desired joint torques follows.

τ d = K(qd − q) (13)

K is the diagonal stiffness matrix and q is the sensed joint
positions.

The next two subsections present the tendon-space and
joint-space formulations of the torque controller. In both
cases, we need to solve for the desired internal tension, td,
such that the tension values are all positive. The tension
distribution algorithm of section II provides a solution that
applies both a lower and upper bound to the tensions.

A. Tendon-Space Controller

We will first develop the tendon-space formulation for
the torque controller. Since actuators often already employ a
well-tuned position controller, a standard approach to force
control uses an inner position loop. The torque control loop
thus needs to pass commanded actuator positions, xd, to
the lower loop, where it is assumed that a high-gain PD
controller exists around the actuator position. The desired
tendon tensions, f d, are found from the desired torques
through the tendon map matrix as follows.

fd = P−1

(
τ d

td

)
(14)

The tendon-space controller models the tendon as a linear
spring, where

f = ks(x − xo). (15)

ks is the spring constant, x is the current position of the
actuator, and xo is the unstretched position. This relation
assumes that the spring constant is effectively equal for all
the tendons. This is a valid assumption, since the tendon
lengths are relatively equal. For a desired tension, the relation
becomes,

fd = ks(xd − xo). (16)

Subtracting (15) and (16) results in the following relation for
the desired actuator position.

xd = x +
1
ks

(fd − f) (17)

This relation inspires the following tendon-space control
law. It feeds forward the current actuator position and adds
damping to increase the stability of the controller.

xd = x − kdẋ + kp(fd − f) (18)

kp and kd are the constant, scalar gains. Since x is both
proportional to f and has a less noisy signal, ẋ is employed
for the damping term instead of ḟ .

A key advantage of this control law is that it does not
employ an integrator as in [2], [4]. The feed forward term
makes the controller faster, avoiding the lag and wind-up
problems associated with the integrator; however, it also
results in non-zero steady-state error.

B. Joint-Space Controller

The tendon-space control law (18) does a good job of
independently tracking the desired tensions. Its transient
behavior, however, displays a coupled response amongst the
joints, one that introduces unnecessary motion given either
step inputs or disturbance responses. This coupling is a direct
product of the control law, rather than the passive dynamics
[5]. The following controller seeks to eliminate this coupled
transience by operating in the joint-space.

Accordingly, an analogous control law to (18) is formu-
lated in the joint-space. This allows for the independent
regulation of the joint torques.

q̄d = q̄ − kd ˙̄q + Kp(τ̄ d − τ̄ ) (19)

The null-space components are included in this relation,
where q̄ =

(q
θ

)
and τ̄ =

(τ
t

)
. τ̄ is computed from the

sensed tensions through (1). Kp is the proportional gain
matrix; it is diagonal but no longer scalar since the internal
tension needs a different gain than the joint torques. kd, on
the other hand, is intentionally left scalar.

To convert the joint velocities to tendon velocities, a
standard virtual work analysis provides the following dual
transformation [10]. This relation assumes negligible friction
in the joint pulleys as well as constant external torque.

ẋ = PT

(
q̇

θ̇

)
(20)

θ̇ is defined as the internal velocity. Assuming equal tendon
stiffnesses, θ̇ parameterizes the space of tendon velocities
that apply no change to the joint torques. Defining the initial
positions as zeros leads to the following relation in the
position domain.

x = PT
(q

θ

)
(21)

Given this transformation, we can now derive our final
joint-space controller.

xd = PT q̄d

= PT [q̄ − kd ˙̄q + Kp(τ̄ d − τ̄ )]
= x − kdẋ + PT Kp (τ̄ d − τ̄ ) (22)

Keeping kd scalar allows us to translate the damping term
to the tendon space. The collocation achieved by using the



Fig. 2. A model of the Robonaut-2 index finger. Motion of the distal joint
is mechanically linked to the medial joint.

actuator sensing, x and ẋ, instead of the joint sensing, q
and q̇, increases the stability of the system. Otherwise, the
feed-forward and damping terms would lag the actuation by
the unmodeled dynamics of the tendon-conduit transmission.

C. Discussion

The tendon-space control law (18) can be rearranged as
follows.

xd = x − kdẋ + P−1kp (τ̄ d − τ̄ ) (23)

Note the similarity between (22) and (23). The essential
difference between the two control laws is in the use of
PT versus P−1. Replacing the inverse with the transpose
provides the decoupling of the joint-space motion. This is
analogous to the duality associated with the Jacobian in the
Cartesian control of serial manipulators. Consider the two
control laws: Δq = kJ−1Δy, and Δq = kJT Δy. In this
expression: J is the end-effector Jacobian, y is the end-
effector position, q is the joint angles, and k is the gain. The
first law produces straight line motion in Cartesian space,
while the second produces coupled Cartesian motion.

In [5], PI torque regulators were implemented on a finger
having no conduits about the tendons. When conduits were
introduced, that approach struggled due to the distributed
stiction between the tendons and conduits, which add com-
plex dynamics or hysteresis to the system. We ended up not
needing to model the hysteresis thanks to the combination
of the feed-forward term and the sensor-actuator collocation.
This combination allowed our controller to produce both a
more stable and faster response compared to the customary
PI controller.

IV. EXPERIMENTAL VALIDATION

A. Mechanical System

The two control laws were tested on an index finger of
the Robonaut-2 robot, a model of which is shown in Fig. 2.
The finger has four tendons and three independent DOF’s: a
yaw, a proximal pitch, and a medial pitch. The yaw joint is
perpendicular to both pitch joints, and the tendon mapping
matrix is shown in (12).

The system is actuated by brushless DC motors with
a planetary reduction gearhead. A ball-screw provides the
linear conversion for the motor power, which is then trans-
mitted to the finger through a tendon-conduit arrangement.
Feedback on the tendon tensions are provided through strain-
gauges lying in the path of the transmission.

0 1 2 3 4 5 6 7 8 9 10
−20

0

20

40

60

80

jo
in

t a
ng

le
 (

de
gs

)

Tendon−Space Controller

 

 
Proximal
Medial
Yaw

0 1 2 3 4 5 6 7 8 9 10
−20

0

20

40

60

80

time (s)

jo
in

t a
ng

le
 (

de
gs

)

Joint−Space Controller

 

 

Fig. 3. Comparison of the two finger controllers. A positive then negative
step input of {0, 45, 90} degs was commanded. Note both the decoupled
and faster response of the joint-space controller.

B. Step Response

The step response of each controller was tested using
a step input of qd = (0, 45, 90)T degs. The results are
shown in Fig. 3. The tendon-space controller exhibited the
aforementioned transient coupling, coupling that disturbed
the tension tracking, delayed the response time, and produced
unsightly motion in the finger. This behavior was consistently
demonstrated throughout our tests; it surfaced also in the
response to external disturbances.

The joint-space controller, on the other hand, eliminated
the coupling and significantly increased the speed of the
response. For both moving joints, the joint-space controller
reduced the settling time by almost 25%. The medial joint
dropped from a settling time of 1.3 s to 0.97 s. The proximal
joint dropped from a settling time of 2.2 s to 1.7 s.

The controller parameters are shown in Table I. In each
case, the gains were tuned to maximize performance. The
lower-loop position controller implemented the same gains
for both runs, which were tuned to produce a critically-
damped response. As seen in the table, a higher stiffness
value was applied to the yaw joint in both cases. The yaw
joint is relatively ill conditioned due to significantly smaller
radii; hence, the higher stiffness better controlled its motion.
The steady-state errors seen in the results can be addressed
with a limited-range integrator.

C. Tension & Torque Regulation

A second experiment demonstrated the performance of the
torque regulation and tension distribution. In this experiment,



tendon-space joint-space

kd 0.01 0.01

kp, Kp 0.01

⎡
⎢⎣

0.05 0 0 0
0 0.05 0 0
0 0 0.05 0
0 0 0 0.003

⎤
⎥⎦

K

⎡
⎣ 0.3 0 0

0 0.2 0
0 0 0.2

⎤
⎦

⎡
⎣ 0.3 0 0

0 0.2 0
0 0 0.2

⎤
⎦

TABLE I

CONTROLLER PARAMETERS USED IN THE EXPERIMENTAL RUN.

the finger was operated in torque control mode. Instead of
the stiffness input in (13), a reference torque is directly
commanded. With the finger sitting against a hard surface,
the reference torque for the proximal joint ramped up from
0 to 3.1 in-lb in regular increments. The minimum and
maximum tension were set at 1 and 8 lb, respectively. At
about 2.3 in-lb, the tensions saturated and the scaled solution
kicked in for the distribution algorithm.

Results of the experiment are shown in Fig. 4. The first
figure shows the tension distribution satisfying the upper and
lower limits. Ideally, the lowest tension should always equal
1 lb, while the maximum tension should equal 8 lbs during
saturation. Deviations from this ideal are due to errors in the
torque regulation and sensor calibration. The second figure
shows the torque regulation, where the displayed torques
are computed from the tension feedback using (1). While
the medial and yaw torques should remain at zero, the
proximal should follow the reference torque until saturation.
At that point, it should follow the scaled solution. The
experiment demonstrates how saturation is achieved without
joint coupling.

V. CONCLUSIONS

For tendon-actuated manipulators, joint-space control of-
fers clear advantages over tendon-space control. Not only
does it eliminate the coupled transience exhibited by tendon-
space formulations, it also significantly increases the speed
of the response. The final form of the control law (22)
reveals how simple the transformation from tendon-space to
joint-space is. Simply switching from P −1 to P T achieves
the desired decoupling. Surprisingly, the same features that
helped reduce the joint-space control law to such a simple
form also enhanced the performance. These features resulted
in a final controller that demonstrated both greater speed and
stability than the typical PI controllers. This fact was critical
for the implementation of a conduit sheathed drive-train.

The problem of tension distribution, faced by all torque
controllers, is essentially a linear programming problem.
Using knowledge of the system, we are able to reduce the
problem to a tractable algorithm—one conducive to real-time
implementation. The upper bound in the algorithm is needed
to protect the tendons and to maintain predictable, decoupled
torques. The non-zero lower bound allows the controller to
either accommodate calibration errors in the tension sensors,
or to reduce the internal tension on the finger.

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8
Tension Distribution

time (s)

te
ns

io
n 

(lb
s)

0 50 100 150 200 250 300 350 400 450
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

time (s)

to
rq

ue
 (

in
 lb

s)

Torque Regulation

 

 
Reference
Scaled
Yaw
Proximal
Medial

Fig. 4. With the finger in torque control mode, the reference proximal
torque is given a triangle input from 0 to 3 in-lb. The controller kept the
tensions bounded by the range [1 lb, 8 lb], allowing the tensions to saturate
without coupling the joint torques.

REFERENCES

[1] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to
Robotic Manipulation. Boca Raton, FL: CRC Press, 1994.

[2] J. Salisbury and J. Craig, “Articulated hands: Force control and
kinematic issues,” International Journal of Robotics Research, vol. 1,
no. 1, pp. 4–17, 1982.

[3] S. Ma, S. Hirose, and H. Yoshinada, “Design and experiments for a
coupled tendon-driven manipulator,” IEEE Control Systems Magazine,
vol. 13, no. 1, pp. 30–36, 1993.

[4] Y. Lee, H. Choi, W. Chung, and Y. Youm, “Stiffness control of
a coupled tendon-driven hand,” IEEE Control Systems Magazine,
vol. 14, no. 5, pp. 10–19, 1994.

[5] R. Platt, M. E. Abdallah, C. W. Wampler, and B. Hargrave, “Joint-
space torque and stiffness control of tendon-driven manipulators,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (in
submission to), Taipei, Taiwan, October 2010.

[6] S. Jacobsen, J. Wood, D. Knutti, and K. Biggers, “The Utah/MIT hand:
Work in progress,” Intl. Journal of Robotic Research, vol. 3, no. 4,
pp. 21–50, 1984.

[7] J. Lee and L. Tsai, “Torque resolver design for tendon-driven manip-
ulators,” ASME Journal of Mechanical Design, vol. 115, pp. 877–883,
1993.

[8] S. Hirose and S. Ma, “Coupled tendon-driven multijoint manipulator,”
in IEEE Intl Conf on Robotics and Automation (ICRA), Sacramento,
April 1991, pp. 1268–1275.

[9] H. Kobayashi, K. Hyodo, and D. Ogane, “On tendon-driven robotic
mechanisms with redundant tendons,” International Journal of
Robotics Research, vol. 17, no. 5, pp. 561–571, May 1998.

[10] M. T. Mason and J. K. Salisbury, Robot Hands and the Mechanics of
Manipulation, 2nd ed. Cambridge, MA: MIT Press, 1982.


